236 research outputs found

    METHODOLOGY FOR ENERGY EFFICIENCY IMPROVEMENT ANALYSIS IN PRESSURIZED IRRIGATION NETWORKS. PRACTICAL APPLICATION

    Full text link
    Tesis por compendioAnalyses of possible synergies between energy recovery and water management are essential for achieving sustainable improvements in the performance of pressurized irrigation networks. Improving the energy efficiency of water systems by hydraulic energy recovery is becoming an inevitable trend for energy conservation, emissions reduction, and increases in profit margins. This Ph.D. research is focused on the proposal and development of an optimization methodology that improves energy efficiency in pressurized irrigation networks. To develop this methodology, the main objective of this Ph.D. thesis, the research is supported by secondary objectives. The first secondary objective overviews the state-of-the-art for different hydropower systems, paying attention to those systems in which residual energy can be considered for energy improvement. Furthermore, the need to analyze this energy improvement in pressurized irrigation networks is justified through enumerating the main advantages and disadvantages of these energy recoveries. This first objective establishes the contextualization stage of the thesis. The second part of this Ph.D. research, which develops the rest of the objectives, is called the procedural stage. This phase contains the analytical and experimental development of this research. The analytical phase develops the main steps of the optimization strategy. Each step comprises one methodology or method that is focused on the following objectives: ¿ To propose a methodology to determine the circulating flow over time in pressurized irrigation networks in any line depending on the agronomist intrinsic parameters of the established crops ¿ To develop a calibration strategy for the flow assignment in lines, which indicates the success of the proposed methodology ¿ To establish the energy balance as well as the involved energy terms to quantify the theoretical recoverable energy in pressurized water networks, particularly in irrigation networks ¿ To present a new methodology to maximize the recovered energy considering the actual feasibility to allocate pumps working as turbines (PATs) within pressurized water networks by using simulated annealing as a water management tool. The analytical phase is complemented with an intensive experimental campaign in two different PATs (radial and axial) in steady and unsteady flow conditions. The campaign regarding steady flow conditions enables the study of the efficiency variations in the machine as a function of the flow and rotational speed. The experimental analysis as well as the modification of the classical affinity laws allows one to determine the best efficiency line (BEL) and the best efficiency head (BEH) based on Suter parameters. Both lines enable modelers to establish the optimal rotational speed as a function of the flow during each instant to maximize the recovered energy. These new lines (BEL and BEH) should be incorporated within the optimization strategy, developing a procedure to recover energy as a function of the number of installed machines. Finally, to complement the developed analysis for the installation of the recovery systems in pressurized water systems, the unsteady flow in these facilities is also analyzed.El desarrollo de los análisis de las posibles sinergias entre los sistemas de recuperación de energía y la gestión del agua es esencial, para poder lograr mejoras en la eficiencia energética de las redes de riego presurizadas a través de medidas sostenibles. La mejora de la eficiencia energética, mediante la recuperación de la energía hidráulica, se está convirtiendo en una tendencia inevitable para la conservación de la energía, la reducción de las emisiones de gases efecto invernadero y el aumento de los márgenes de beneficio en los sistemas de distribución de agua presurizados. Esta tesis doctoral está centrada en la propuesta y desarrollo de una metodología de optimización, la cual, mejore la eficiencia energética en redes de riego presurizadas. Para desarrollar esta metodología, objetivo principal de esta tesis, la investigación está basada en diferentes objetivos secundarios. El primer objetivo secundario, estudia el estado del arte en los diferentes sistemas hidroeléctricos, prestando atención a aquellos sistemas en los que, la energía residual puede ser tenida en cuenta para mejorar la eficiencia energética. La necesidad de analizar esta mejora energética en las redes de riego presurizadas, se justifica mediante la enumeración de las principales ventajas y desventajas de estos sistemas de recuperación tienen sobre los sistemas de distribución. Este primer objetivo, establece la etapa de contextualización de la tesis. La segunda parte de la tesis, denominada fase procedimental o de procedimiento, desarrolla el resto de los objetivos y contiene, el desarrollo analítico y experimental de esta investigación. La fase analítica desarrolla los principales bloques que forman la estrategia de optimización. Estos bloques de contenido están constituidos, cada uno de ellos, por una metodología desarrollada o método aplicado, cubriendo los siguientes objetivos: ¿ Proponer una metodología que determine el caudal circulante a lo largo del tiempo, en cualquier línea, en función de los parámetros intrínsecos agronómicos. ¿ Desarrollar una estrategia de calibración para la asignación de caudales en líneas, que demuestre la bondad de la metodología propuesta. ¿ Establecer el balance energético, así como los términos energéticos involucrados, para cuantificar la energía recuperable teórica en redes presurizadas, particularmente en redes de riego. ¿ Presentar una nueva metodología de maximización de energía recuperada donde la viabilidad de asignar bombas trabajando como turbinas (PATs) dentro de redes de distribución sea considerada, mediante el uso de la herramienta 'simulated annealing' en la gestión del agua. La fase analítica se complementa con el desarrollo de una campaña experimental en dos PATs diferentes (una de tipo radial y otra de tipo axial). Ambas máquinas han sido ensayadas en condiciones de flujo permanente y transitorio. El análisis experimental en condiciones de flujo permanente ha permitido estudiar la variación de la eficiencia de la máquina en función del caudal y de la velocidad de rotación de la misma. Este análisis experimental, así como la modificación de las leyes clásicas de semejanza, han hecho posible la definición de la mejor línea de eficiencia (best efficiency line (BEL)) y la mejor eficiencia de altura recuperada (best efficiency head (BEH)). Ambas líneas están basadas en los parámetros de Suter, y permiten a los modeladores el establecimiento de la velocidad de giro óptima en función del caudal circulante en cada instante, maximizando la energía recuperada. Estas nuevas líneas (BEL y BEH) deben incorporarse a la estrategia de optimización, teniéndolas en cuenta a lo largo del proceso para recuperar energía en función del número de máquinas instaladas en el sistema. Finalmente, para complementar el análisis desarrollado de la instalación de sistemas de recuperación energética en redes de distribución, se ha analiEl desenvolupament de les anàlisis de les possibles sinergies entre els sistemes de recuperació d'energia i la gestió de l'aigua són essencials per a aconseguir millores en l'eficiència energètica de les xarxes de reg pressuritzades a través de mesures sostenibles. La millora de l'eficiència energètica, mitjançant la recuperació de l'energia hidràulica, s'està convertint en una tendència inevitable per a la conservació de l'energia, la reducció de les emissions de gasos efecte hivernacle i l'augment dels marges de benefici en els sistemes de distribució d'aigua pressuritzada. Aquesta tesi doctoral està centrada en la proposta i desenvolupament d'una metodologia d'optimització, la qual millore l'eficiència energètica en xarxes de reg pressuritzades. Per a desenvolupar aquesta metodologia, objectiu principal d'aquesta tesi, la recerca ha estat basada en diferents objectius secundaris. El primer objectiu secundari estudia l'estat de l'art en els diferents sistemes hidroelèctrics, centrant-se en aquells sistemes en els quals l'energia residual pot ser tinguda en compte per a millorar l'eficiència energètica. La necessitat d'analitzar aquesta millora energètica en les xarxes de reg pressuritzades es justifica mitjançant l'enumeració dels principals avantatges i desavantatges que aquests sistemes de recuperació tenen sobre els sistemes de distribució. Aquest primer objectiu estableix l'etapa de contextualització de la tesi. La segona part de la tesi, denominada fase procedimental o de procediment, desenvolupa la resta dels objectius i conté(, )el desenvolupament analític i experimental d'aquesta recerca. La fase analítica desenvolupa els principals blocs que formen l'estratègia d'optimització. Aquests blocs de contingut estan constituïts cadascun d'ells per una metodologia desenvolupada o mètode aplicat, els quals cobreixen els següents objectius: ¿ Proposar una metodologia que determine el cabal circulant al llarg del temps, en qualsevol línia, en funció dels paràmetres intrínsecs agronòmics. ¿ Desenvolupar una estratègia de calibratge per a l'assignació de cabals en línies, que demostre la bondat de la metodologia proposada. ¿ Establir el balanç energètic, així com els termes energètics involucrats, per a quantificar l'energia recuperable teòrica en xarxes pressuritzades, particularment en xarxes de reg. ¿ Presentar una nova metodologia de maximització d'energia recuperada, on la viabilitat d'assignar bombes treballant com a turbines (PATs) dins de xarxes de distribució siga considerada, mitjançant l'ús de l'eina "simulated annealing" en la gestió de l'aigua. La fase analítica es complementa amb el desenvolupament d'una campanya experimental en dues PATs diferents (una de tipus radial i una altra de tipus axial), les quals han sigut assajades en condicions de flux permanent i transitori. L'anàlisi experimental, en condicions de flux permanent, ha permès estudiar la variació de l'eficiència de la màquina en funció del cabal i de la velocitat de rotació de la mateixa. Aquesta anàlisi experimental, així com la modificació de les lleis clàssiques de semblança, han fet possible la definició de la millor línia d'eficiència (best efficiency line (BEL)) i la millor eficiència d'altura recuperada (best efficiency head (BEH)). Ambdues línies estan basades en els paràmetres de Suter i permeten als modeladors l'establiment de la velocitat de gir òptima, en funció del cabal circulant en cada instant, maximitzant l'energia recuperada. Aquestes noves línies (BEL i BEH) han d'incorporar-se a l'estratègia d'optimització, tenint-les en compte al llarg del procés per a recuperar energia en funció del nombre de màquines instal·lades en el sistema. Finalment, per a complementar l'anàlisi desenvolupada de la instal·lació de sistemes de recuperació energètica en xarxes de distribució, s'ha analitzat el règim transitori en aquests sistemes quan es produeixPérez Sánchez, M. (2017). METHODOLOGY FOR ENERGY EFFICIENCY IMPROVEMENT ANALYSIS IN PRESSURIZED IRRIGATION NETWORKS. PRACTICAL APPLICATION [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/84012TESISPremiadoCompendi

    Sustainable Development Goals integrated in Project-based Learning in the Mechanical Engineering Degree

    Full text link
    [EN] The Sustainable Development Goals (SDGs) are an action plan to reach a better and more sustainable future for everybody. This is the main reason why universities have to make a special effort to instil in students the importance of the SDGs as well as promote actions addressed to the end poverty, the protection of the planet and the improvement of lives and prospects of everyone in any place. In light of this, one of the methodologies that currently is very used by universities is Project- Based Learning (PBL). This methodology promotes active teaching in which students are the main actors. With this methodology students solve challenging situations, raise questions, and try to answer them using their knowledge, means, resources, research, reflection in an active and collaborative way. It is not a new methodology, but it is unquestionable that in the last years it has been implemented in a generalized way in comparison with other educational trends. The objective of this paper is to define a learning approach based on PBL to achieve and enhance students' knowledge about SDGs. In addition, the paper also shows an illustrative example of a PBL model applied to some of the 17 SGDs that can be the basis for other teachers to apply the PBL methodology to develop students¿ capacity to achieve SGDs in other subjects and/or degrees.This article has been supported by Universitat Politècnica de València, particularly by the Vicerectorate for Digital Resources and Documentation (Vicerrectorado de Recursos Digitales y Documentación) and Vice-Rectorate for Studies, Quality and Accreditation (Vicerrectorado de Estudios, Calidad y Acreditación) under the Call for Learning + Teaching (Convocatoria A+D2019: Aprendizaje + Docencia. Proyectos de Innovación y Mejora Educativa) and Project Code: A157. The authors would like to acknowledge the support of the Institute of Educational Sciences (Instituto de Ciencias de la Educación), the Evaluation and Monitoring Commission for Educational Innovation and Improvement Projects (Comisión de Evaluación y Seguimiento de Proyectos de Innovación y Mejora Educativa (CESPIME) and Escuela Politécnica Superior de Alcoy.Pérez-Sánchez, M.; Sanchis, R. (2021). Sustainable Development Goals integrated in Project-based Learning in the Mechanical Engineering Degree. INTED proceedings (Online). 7480-7487. https://doi.org/10.21125/inted.2021.1502S7480748

    Optimización de la explotación del postrasvase Júcar-Vinalopó, con análisis de la viabilidad de su aprovechamiento energético

    Full text link
    [ES] Se presenta un trabajo en el cual se modeliza, en régimen cuasiestático y transitorio, el sistema hidráulico del postrasvase Júcar-Vinalopó. El estudio engloba por primera vez, el análisis conjunto de la demanda de las entidades de riego de acuerdo a la capacidad de bombeo del Trasvase Júcar-Vinalopó y de las infraestructuras de transporte y almacenamiento existentes en las comarcas del Alto, Medio, Bajo Vinalopó y L¿Alacantí. El modelo cuasiestático ha sido desarrollado con el software Epanet, modelizando elementos no convencionales que dicho software no contiene. El régimen transitorio ha sido analizado mediante el programa Allievi desarrollado por el ITA de la UPV, haciendo uso de sus capacidades y condiciones de contorno implementadas para modelizar el comportamiento de los elementos reales existentes en el sistema. La combinación de ambos modelos constituye una potente herramienta para analizar, planificar, diseñar y gestionar infraestructuras hidráulicas de riego complejas, como la del sistema analizado. Los modelos desarrollados, una vez sancionados con la práctica, serán fundamentales para la futura explotación del sistema ¿Postrasvase Júcar-Vinalopó¿. El presente trabajo concluye desarrollando un estudio en el cual se ha analizado la viabilidad económica del establecimiento, en los diferentes saltos hidráulicos existentes a lo largo de las entidades conectadas al sistema hidráulico Postrasvase Margen Derecha, de minicentrales de producción de energía. Se ha puesto de manifiesto que esta recuperación energética no contribuye de manera importante a la mejora del precio del agua, por lo que deben seguir buscándose soluciones alternativas para lograr que el agua del Trasvase pueda utilizarse para el riego a unos precios que la agricultura pueda pagar, sin tener que acudir a subvenciones públicas.[EN] We present a work which is modelled, in regime quasi-static and transient, the hydraulic system called ¿Postrasvase Júcar- Vinalopó¿. The study includes, for the first time, joint analysis of the demands of Irrigation Entities according to the pumping ability of Transfer Júcar-Vinalopó and the transport and storage infrastructures existing in the regions of High, Middle, Lower Vinalopó y L¿Alacantí. The quasi-static model has been developed with the software Epanet, modelling unconventional elements that this software does not contain. The transient regime has been analyzed with The programme Allievi which has been developed by the ITA of the UPV, using their skills and boundary conditions implemented to model the behavior of real elements in the system. The combination of both models is a powerful tool for analyzing, planning, designing and managing complex irrigation hydraulic infrastructures, such as the analyzed system. The models developed, once sanctioned with the practice, will be fundamental for the future operation of the system ¿Postrasvase Júcar-Vinalopó¿. This paper concludes with a study in which has been analyzes the viability economic of the establishing, in different hydraulic jumps connected to hydraulic system ¿Postrasvase Júcar-Vinalopó¿, of mini-hydroelectric power plant. It has been shown that this recuperation energetic doesn¿t contribute significantly to the improvement of water pricing, so you have been seeking alternatives to get water can be used for irrigation, at prices that agriculture can afford without resorting to a public subsidies.[CA] Es presenta un treball al qual es desenvolupa, en règim quasiestàtic i transitori, l'anàlisi del sistema hidràulic Postransvasament Xúquer-Vinalopó. L'estudi engloba, per primera vegada, l'anàlisi conjunt de la demanda de les entitats de reg d'acord amb la capacitat de bombejament del Transvasament Xúquer-Vinalopó i de les infraestructures de transport i magatzenament existents a les comarques de l'Alt, Mig, Baix i l'Alacantí. El model quasiestàtic ha sigut desenvolupat amb el software Epanet, modelitzant elements no convencionals que dit software no conté. El règim transitori ha sigut analitzat mitjançant el programa Allievi, desenvolupat per l'Institut Tecnològic de l'Aigua, de la UPV, fent ús de les seues capacitats i condicions de contorn implementades per a modelitzar el comportament dels elements reals existents al sistema. La combinació d'ambdós models , constitueixen una potent ferramenta per a analitzar, planificar, dissenyar i gestionar infraestructures hidràuliques de reg complexes. Els models desenvolupats, una vegada sancionats amb la pràctica, permetran dur a terme la futura explotació del sistema ¿Postransvasament Xúquer-Vinalopó¿. El present treball conclou desenvolupant un estudi al qual s'ha analitzat la viabilitat econòmica de l'establiment dels diferents salts hidràuliques existents al llarg de les entitats connectades al sistema hidràulic postransvasament Marge Dreta. S'ha posat de manifest que aquesta recuperación energètica no contribueix de manera important a la millora del preu de l'aigua, per la qual cosa han de seguir buscant-se solucions alternatives per aconseguir que el aigua del Transvasament puga utilitzar-se per al reg a uns preus que l'agricultura puga pagar, sense necessitar subvencions públiques.Pérez Sánchez, M. (2012). Optimización de la explotación del postrasvase Júcar-Vinalopó, con análisis de la viabilidad de su aprovechamiento energético. http://hdl.handle.net/10251/17930Archivo delegad

    Continuous Project-Based Learning in Fluid Mechanics and Hydraulic Engineering Subjects for Different Degrees

    Full text link
    [EN] Subjects related to fluid mechanics for hydraulic engineers ought to be delivered in interesting and active modes. New methods should be introduced to improve the learning students' abilities in the different courses of the Bachelor's and Master's degree. Related to active learning methods, a continuous project-based learning experience is described in this research. This manuscript shows the developed learning methodology, which was included on different levels at Universitat Politecnica de Valencia. The main research goal is to show the active learning methods used to evaluate both skills competences (e.g., "Design and Project") and specific competences of the students. The research shows a particular developed innovation teaching project, which was developed by lecturers and professors of the Hydraulic Engineering Department, since 2016. This project proposed coordination in different subjects that were taught in different courses of the Bachelor's and Master's degrees, in which 2200 students participated. This coordination improved the acquisition of the learning results, as well as the new teaching methods increased the student's satisfaction index.Pérez-Sánchez, M.; López Jiménez, PA. (2020). Continuous Project-Based Learning in Fluid Mechanics and Hydraulic Engineering Subjects for Different Degrees. Fluids. 5(2):1-15. https://doi.org/10.3390/fluids5020095S11552Chanson, H. (2001). Teaching Hydraulic Design in an Australian Undergraduate Civil Engineering Curriculum. Journal of Hydraulic Engineering, 127(12), 1002-1008. doi:10.1061/(asce)0733-9429(2001)127:12(1002)Hotchkiss, R. H. (2001). Flow over a «Killer» Weir Design Project. Journal of Hydraulic Engineering, 127(12), 1022-1027. doi:10.1061/(asce)0733-9429(2001)127:12(1022)Novak, P., & Valentine, E. M. (2001). Teaching of Hydraulic Design at University of Newcastle upon Tyne. Journal of Hydraulic Engineering, 127(12), 1009-1012. doi:10.1061/(asce)0733-9429(2001)127:12(1009)Kelley, C. A., Conant, J. S., & Smart, D. T. (1991). Master Teaching Revisited Pursuing Excellence from the Students’ Perspective. Journal of Marketing Education, 13(2), 1-10. doi:10.1177/027347539101300202Pierce, R., & Fox, J. (2012). Vodcasts and Active-Learning Exercises in a «Flipped Classroom» Model of a Renal Pharmacotherapy Module. American Journal of Pharmaceutical Education, 76(10), 196. doi:10.5688/ajpe7610196Savage, R. N., Chen, K. C., & Vanasupa, L. (2009). Integrating project-based learning throughout the undergraduate engineering curriculum. IEEE Engineering Management Review, 37(1), 25-25. doi:10.1109/emr.2009.4804346Universitat Politècnica de València. Institutional Project of the Generic Outcomeshttps://www.upv.es/entidades/ICE/info/Proyecto_Institucional_CT.pdfHadim, H. A., & Esche, S. K. (s. f.). Enhancing the engineering curriculum through project-based learning. 32nd Annual Frontiers in Education. doi:10.1109/fie.2002.1158200Alptekin, S. E., DeTurris, D., Macy, D. J., & Ervin, J. E. (2005). Development of a flying eye: A project-based learning experience. Journal of Manufacturing Systems, 24(3), 226-236. doi:10.1016/s0278-6125(06)80012-9Bell, S. (2010). Project-Based Learning for the 21st Century: Skills for the Future. The Clearing House: A Journal of Educational Strategies, Issues and Ideas, 83(2), 39-43. doi:10.1080/0009865090350541

    Sustainability Challenges in Hydraulic Engineering for Agriculture

    Full text link
    Pérez Sánchez, M.; López Jiménez, PA. (2017). Sustainability Challenges in Hydraulic Engineering for Agriculture. Agricultural Research & Technology. 11(4):1-2. doi:10.19080/ARTOAJ.2017.11.555816S1211

    Experimental Equipment to Develop Teaching of the Concept Viscosity

    Full text link
    [EN] Some of the subjects have complex concepts, which are currently taught using deductive methods in the first years of University Degree. However, the experience shows the results obtained from students¿ learning goals were quite low. Therefore, the use of inductive method is a crucial factor to improve students¿ learning results and re-thinking the way to teach in basic subject of Engineering Bachelor Degree. One example is the subject called Fluid Mechanics, which is present in many Bachelor Degrees. This matter has abstract concepts, which are normally taught by traditional methods. This type of teaching makes difficult to be understood by the student. This research proposes an inductive methodology to work the viscosity concept using an activity. In this test, the student has to carry out some measurements with different fluids using a simple measurement device while they participated actively in the learning.Pérez-Sánchez, M.; Galstyan-Sargsyan, R.; Pérez-Sánchez, MI.; López Jiménez, PA. (2018). Experimental Equipment to Develop Teaching of the Concept Viscosity. Education Sciences. 8(4). doi:10.3390/educsci8040179S8

    Environmental and energy problematic in the mediterranean irrigation regions framework

    Full text link
    [EN] Agriculture is a significant user of water and energy in Mediterranean coasts of Europe, such as Spanish Mediterranean regions. Water implications of such irrigations are well known, but also energy must be considered when environmental implications are analyzed. Apart from this, Mediterranean region has its particular problematic framework related to irrigation issues. Often, the availability of irrigation is determinant to the viability of farmers, and the energy implications must be considered when determining the feasibility of small and big farms, particularly in the Mediterranean regions, where the wide variety of customs in each group of irrigators and definitely, its specific weather conditions, typical of a semi-arid zone. All these aspects are analyzed in this paper, as a state of the art determination of problems and possible solutions in a regional scale. Some solutions presented in this paper can contribute with theoretical reductions of emission of greenhouse gasses until 174.10 tCO2/year in pumped systems and 58.49 tCO2/year in multipurpose systems.Romero, L.; Pérez-Sánchez, M.; López Jiménez, PA. (2017). Environmental and energy problematic in the mediterranean irrigation regions framework. International Journal of Energy and Environment (IJEE). 8(1):51-62. http://hdl.handle.net/10251/99657S51628

    Project-Based Learning Applied in the Pandemic Scenario. Case Study: Fluid-Mechanical Engineering

    Full text link
    [EN] The pandemic situation due to SARS-Cov-2 obligates to adapt the learning processes in different academic levels. Universitat Politècnica de València (Spain) had to deal with this challenge, where the learning process changed from a face-to-face way to a non-face learning model when the confinement began in March 2020. This caused the need to adapt the teaching process, methods and materials from in-person classes to virtual ones. This contribution shows the adaptation process to face the problems caused by the pandemic and related to the non-face-to-face education through an example in a case study, particularly in the subject called Fluid-Mechanics Engineering. This subject is taught in the third year of the mechanical engineering degree at the Universitat Politècnica de Valencia (Campus of Alcoy). The students enrolled in this subject followed two different teaching procedures and the present research shows how the planning of the subject was adapted when the pandemic situation arose, the different activities developed to adjust to this new context as well as the perception of the students about such an adaptation through the development of an online survey.This work was supported by the project SISIFO (Development of analytical toolS to characterIze the Sustainability of hydraulic systems Indicators that deFine sustainable development Objectives) PID2020-114781RA-I00 from Spanish State Research Plan Scientific and Technical and Innovation 2017-2020. This article has been supported by Universitat Politècnica de València, particularly by the Vice-rectorate for Digital Resources and Documentation (Vicerrectorado de Recursos Digitales y Documentación) and Vice-Rectorate for Studies, Quality and Accreditation (Vicerrectorado de Estudios, Calidad y Acreditación) under the Call for Learning + Teaching (Convocatoria A+D2019: Aprendizaje + Docencia. Proyectos de Innovación y Mejora Educativa) and Project Code: A157. The authors would like to acknowledge the support of the Institute of Educational Sciences (Instituto de Ciencias de la Educación), the Evaluation and Monitoring Commission for Educational Innovation and Improvement Projects (Comisión de Evaluación y Seguimiento de Proyectos de Innovación y Mejora Educativa (CESPIME) and Escuela Politécnica Superior de AlcoyPérez-Sánchez, M.; López Jiménez, PA.; Sanchis, R. (2021). Project-Based Learning Applied in the Pandemic Scenario. Case Study: Fluid-Mechanical Engineering. ICERI Proceedings. 3764-3769. https://doi.org/10.21125/iceri.2021.0899S3764376

    Blades design for a small wind turbine to supply a rural house. Case study

    Full text link
    [EN] Nowadays the global warming has caused a growing increase of sensitivity of the population to reduce the consumption of non-renewable resources. Therefore, the use of renewable energies is currently increasing and the development of studies to install small renewable generators to supply domestic uses also does. In this line, the present research develops a methodology to design the blades of a small wind turbine with horizontal axis, applying it to a real case study. To improve the design of the wind turbine, a meteorological station was installed in the study point as well as historic registered data were used. Finally, the estimated energy produced by this generator was 1453 kWh/year and the energy could be used to supply in the rural house to complement the electrical consumption, reducing the consumption of the other non-renewable resources.Ortiz-Juan, R.; Pérez-Sánchez, M.; López Jiménez, PA. (2018). Blades design for a small wind turbine to supply a rural house. Case study. International Journal of Energy and Environment (IJEE). 9(1):27-36. http://hdl.handle.net/10251/114608S27369

    Modified Affinity Laws in Hydraulic Machines towards the Best Efficiency Line

    Full text link
    [EN] The development of hydraulic and optimization models in water networks analyses to improve the sustainability and efficiency through the installation of micro or pico hydropower is swelling. Hydraulic machines involved in these models have to operate with different rotational speed, in order that in each instant to maximize the recovered energy.When the changes of rotational speed are determined using affinity laws, the errors can be significant. Detailed analyses are developed in this research through experimental tests to validate and propose new affinity laws in different reaction turbomachines. Once the errors have been analyzed, a methodology to modify the affinity laws is applied to radial and axial turbines. An empirical method to obtain the Best Efficiency Line (BEL) in proposed (i.e., based on all the Best Efficiency Points (BEPs) for different flows). When the experimental measurements and the calculated values by the empirical method are compared, the mean errors are reduced 81.81%, 50%, and 86.67% for flow, head, and efficiency parameters, respectively. The knowledge of BEL allows managers to define the operation rules to reach the BEP for each flow, improving the energy efficiency in the optimization strategies to be adopted.This research is supported by Program to support the academic career of the faculty of the Universitat Politecnica de Valencia 2015/2016 in the project "Methodology for Analysis of Improvement of Energy Efficiency in Irrigation Pressurized Network".Pérez-Sánchez, M.; López Jiménez, PA.; Ramos, HM. (2018). Modified Affinity Laws in Hydraulic Machines towards the Best Efficiency Line. Water Resources Management. 32(3):829-844. https://doi.org/10.1007/s11269-017-1841-0S829844323Abbott M, Cohen B (2009) Productivity and efficiency in the water industry. Util Policy 17:233–244Alexander KV, Giddens EP, Fuller AM (2009) Radial- and mixed-flow turbines for low head microhydro systems. Renew Energy 34:1885–1894. https://doi.org/10.1016/j.renene.2008.12.013Araujo LS, Ramos HM, Coehlo ST (2006) Pressure Control for Leakage Minimisation in Water Distribution Systems Management. Water Resour Manag 20:133–149. https://doi.org/10.1007/s11269-006-4635-3Cabrera E, Cobacho R, Soriano J (2014) Towards an Energy Labelling of Pressurized Water Networks. Procedia Eng 70:209–217. https://doi.org/10.1016/j.proeng.2014.02.024Carravetta A, Conte MC, Fecarotta O, Ramos HM (2014a) Evaluation of PAT performances by modified affinity law. Procedia Eng 89:581–587. https://doi.org/10.1016/j.proeng.2014.11.481Carravetta A, Del Giudice G, Fecarotta O, Ramos H (2013) Pump as Turbine (PAT) Design in Water Distribution Network by System Effectiveness. Water 5:1211–1225. https://doi.org/10.3390/w5031211Carravetta A, Del Giudice G, Fecarotta O, Ramos H (2012) Energy Production in Water Distribution Networks: A PAT Design Strategy. Water Resour Manag 26:3947–3959. https://doi.org/10.1007/s11269-012-0114-1Carravetta A, Fecarotta O, Martino R, Antipodi L (2014b) PAT efficiency variation with design parameters. Procedia Eng 70:285–291. https://doi.org/10.1016/j.proeng.2014.02.032Corominas J (2010) Agua y Energía en el riego en la época de la sostenibilidad. Ing del Agua 17(3):219–233. https://doi.org/10.4995/ia.2010.2977Dannier A, Del Pizzo A, Giugni M, Fontana N, Marini G, Proto D (2015) Efficiency evaluation of a micro-generation system for energy recovery in water distribution networks. Int. Conf. Clean Electr Power 689–694. https://doi.org/10.1109/ICCEP.2015.7177566Derakhshan S, Nourbakhsh A (2008) Experimental study of characteristic curves of centrifugal pumps working as turbines in different specific speeds. Exp Thermal Fluid Sci 32:800–807. https://doi.org/10.1016/j.expthermflusci.2007.10.004Fecarotta O, Carravetta A, Ramos HM, Martino R (2016) An improved affinity model to enhance variable operating strategy for pumps used as turbines. J Hydraul Res 1686:1–10. https://doi.org/10.1080/00221686.2016.1141804Fontana N, Giugni M, Portolano D (2012) Losses Reduction and Energy Production in Water-Distribution Networks. J Water Resour Plan Manag 138:237–244. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000179Giugni M, Fontana N, Ranucci A (2014) Optimal Location of PRVs and Turbines in Water Distribution Systems. J Water Resour Plan Manag 140:06014004. https://doi.org/10.1061/(ASCE)WR.1943-5452.0000418Giustolisi O, Savic D, Kapelan Z (2008) Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks. J Hydraul Eng 134:626–635. https://doi.org/10.1061/(ASCE)0733-9429(2008)134:5(626)Gulich J (2003) Effect of Reynolds number and surface roughness on the efficiency of centrifugal pump. J Fluid Eng 125:670–679Jiménez-Bello MA, Royuela A, Manzano J, Prats AG, Martínez-Alzamora F (2015) Methodology to improve water and energy use by proper irrigation scheduling in pressurised networks. Agric Water Manag 149:91–101. https://doi.org/10.1016/j.agwat.2014.10.026Kevin B (1990) Optimization m o d e l for w a t e r distribution system design. J Hydraul Eng 115:1401–1418Mataix C (2009) Turbomáquinas Hidráulicas. Universidad Pontificia Comillas, MadridMcNabola A, Coughlan P, Corcoran L, Power C, Prysor Williams A, Harris I, Gallagher J, Styles D (2014) Energy recovery in the water industry using micro-hydropower: an opportunity to improve sustainability. Water Policy 16:168. https://doi.org/10.2166/wp.2013.164Moreno M, Córcoles J, Tarjuelo J, Ortega J (2010) Energy efficiency of pressurised irrigation networks managed on-demand and under a rotation schedule. Biosyst Eng 107:349–363. https://doi.org/10.1016/j.biosystemseng.2010.09.009Nazari A, Meisami H, (2008) Instructing WaterGEMS Software Usage. Department of Publications and Technical Affairs of Iranian National Retrofitting Center (INRC), TehranPasten C, Santamarina JC (2012) Energy and quality of life. Energy Policy 49:468–476. https://doi.org/10.1016/j.enpol.2012.06.051Pérez-Sánchez M, Sánchez-Romero F, Ramos HM, López-Jiménez PA (2016) Modeling Irrigation Networks for the Quantification of Potential Energy Recovering: A Case Study. Water 8:1–26. https://doi.org/10.3390/w8060234Pérez-Sánchez M, Sánchez-Romero F, Ramos H, López-Jiménez PA (2017) Energy Recovery in Existing Water Networks: Towards Greater Sustainability. Water 9(2):97Pérez Sánchez M, Sánchez-Romero FJ, Ramos H, López-Jiménez PA (2018) PATs selection towards sustainability in irrigation networks: simulated annealing as a water management tool. Renew Energy 116:234–249. https://doi.org/10.1016/j.renene.2017.09.060Ramos HM, Borga A (1999) Pumps as turbines: an unconventional solution to energy production. Urban Water 1:261–263. https://doi.org/10.1016/S1462-0758(00)00016-9Ramos HM, Mello M, De PK (2010) Clean power in water supply systems as a sustainable solution: from planning to practical implementation. Water Sci Technol Water Supply 10:39–49. https://doi.org/10.2166/ws.2010.720Ramos HM, Simão M, Borga A (2013) Experiments and CFD Analyses for a New Reaction Microhydro Propeller with Five Blades. J Energy Eng 139:109–117. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000096Rossman LA (2000) EPANET 2: User’s manual. U.S. EPA. ed, CincinnatiSamora I, Franca M, Schleiss A, Ramos HM (2016a) Simulated Annealing in Optimization of Energy Production in a Water Supply Network. Water Resour Manag 30:1533–1547. https://doi.org/10.1007/s11269-016-1238-5Samora I, Hasmatuchi V, Münch-Alligné C, Franca MJ, Schleiss AJ, Ramos HM (2016b) Experimental characterization of a five blade tubular propeller turbine for pipe inline installation. Renew Energy 95:356–366. https://doi.org/10.1016/j.renene.2016.04.023Sarbu I, Borza I (1998) Energetic optimization of water pumping in distribution systems. Period Polytech Ser Mech Eng 42:141–152Shi G, Liu X, Yang J, Miao S, Li J (2015) Theoretical research of hydraulic turbine performance based on slip factor within centripetal impeller. Adv Mech Eng 7(7):1–12. https://doi.org/10.1177/1687814015593864Simpson AR, Marchi A (2013) Evaluating the Approximation of the Affinity Laws and Improving the Efficiency Estimate for Variable Speed Pumps. J Hydraul Eng 139:1314–1317. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000776Singh P (2005) Optimization of the Internal Hydraulic and of System Design in Pumps as Turbines with Field Implementation and Evaluation. University of Karlsruhe, KarlsruheSuter P (1966) Representation of pump characteristics for calculation of water hammer. Sulzer Tech Rev 66:45–48Ulanicki B, Kahler J, Coulbeck B (2008) Modeling the Efficiency and Power Characteristics of a Pump Group. J. Water Resour Plan Manag 134:88–93. https://doi.org/10.1061/(ASCE)0733-9496(2008)134:1(88)Yang SS, Derakhshan S, Kong FY (2012) Theoretical, numerical and experimental prediction of pump as turbine performance. Renew Energy 48:507–513. https://doi.org/10.1016/j.renene.2012.06.00
    corecore